
8-bit and 16 bit AVR timers
Kizito NKURIKIYEYEZU, Ph.D.

8-bit timers in the ATMega328
An ATMega228 has two 8-bit timers/counters (Timer0 and timer2)
In the general parlance, TCNT0 and TCNT2) are nearly identical.
the two timers are 8 bit timers—can count from 0 to 255
The TCNT0 register hold the timer Count and it is incremented on every timer
"tick". If the timer is turned on it ticks from 0 to 255 and overflows

FIG 1. AVR Timer diagram

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 1 / 48

8-bit timer/counter registers
There exists 4 registers: TCNT0, OCR0, TCCR0, ASSR1, 2.

TCNT0: (timer/counter register)
The 8-bit counter itself
Holds the present value of count
Upon reset, zero. It counts up with each
pulse.

OCR0: (output compare register): this
register is always compared against TCNT0
TCCR0: (timer/counter 0 control register):
determines the mode of operation
ASSR: (asynchronous status register):
coordinates writing to TCNT0, OCR0,
TCCR0 when in asynchronous mode

1https://exploreembedded.com/wiki/AVR_Timer_programming
2https://wolles-elektronikkiste.de/en/timer-and-pwm-part-1-8-bit-timer0-2
Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 2 / 48

https://exploreembedded.com/wiki/AVR_Timer_programming
https://wolles-elektronikkiste.de/en/timer-and-pwm-part-1-8-bit-timer0-2

8 bit timer programming

TCCR0 —Timer/Counter Control Register

FIG 2. 8-bit registers in TIMER0

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 3 / 48

The Timer/Counter Register TCNTx
There are two counter registers for each timer, namely TCNT0 (Timer/Counter
0), TCNT1L, TCNT1H and TCNT2.
Since the Timer1 is 16 bit, it needs two registers. This lecturer only focuses on
Timer0 and 2
The Timer/Counter Control Registers is responsible for controlling the timer

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 4 / 48

TAB 1. TCCR0 —Timer/Counter Control Register

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 5 / 48

TAB 2. TCCR2 —Timer/Counter Control Register

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 6 / 48

The Timer/Counter Control Registers
TCCRxy
The main settings for the timers are made in the Timer/Counter Control Registers.

TCCR0A and TCCR0B belong to Timer0
TCCR2A and TCCR2B belong to Timer2.

FIG 3. TCCR2A Control Register for Timer2

FIG 4. TCCR2B Control Register for Timer2

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 7 / 48

CS02:CS00—Timer0 clock source bits
CS02:CS00 (Timer0 clock source): These bits in the TCCR0 register are used to
choose the clock source

If CS02:CS00 = 000, then the
counter is stopped.
If CS02–CS00 have values between
001 and 101, the oscillator is used
as clock source and the
timer/counter acts as a timer. In this
case, the timers are often used for
time delay generation FIG 5. TIMER0 Timer0 clock source

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 8 / 48

TAB 3. Setting the prescaler with the clock select bits for Timer2

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 9 / 48

Resolution
Resolution—Smallest amount of time that a timer can measure. This is the inverse
of the timer clock frequency. For example, at 16MHz clock

resolution =
1

16MHz/N
=

N
16MHz

= N × 62.5ns (1)

FIG 6. Timer, clock and prescaler

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 10 / 48

Range
Range—maximum amount of time that a timer can measure.

range = resolution × 2n (2)

(where n is the number of bits in the timer)

TAB 4. Timer resolution and range calculation

Note: Timer 2 has additional prescale values of 32 and 128.
Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 11 / 48

CS02:CS00—Examples
Find the value for TCCR0 if we want to program Timer0 in Normal mode, no
prescaler. Use AVR’s crystal oscillator for the clock source.

Find the timer’s clock frequency and its period for various AVR-based systems,
with the following crystal frequency of (A) 10MHz, (B) 8MHz and (C) 1MHz.
Assume that no prescaler is used.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 12 / 48

CS02:CS00—Examples
Find the value for TCCR0 if we want to program Timer0 in Normal mode, no
prescaler. Use AVR’s crystal oscillator for the clock source.

Find the timer’s clock frequency and its period for various AVR-based systems,
with the following crystal frequency of (A) 10MHz, (B) 8MHz and (C) 1MHz.
Assume that no prescaler is used.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 12 / 48

CS02:CS00—Examples
Find the value for TCCR0 if we want to program Timer0 in Normal mode, no
prescaler. Use AVR’s crystal oscillator for the clock source.

Find the timer’s clock frequency and its period for various AVR-based systems,
with the following crystal frequency of (A) 10MHz, (B) 8MHz and (C) 1MHz.
Assume that no prescaler is used.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 12 / 48

WGM01:00 —working mode bits
TIMER0 can work in 4 different modes

Normal, (WGM00 : WGM01 = 00)
Clear timer on compare(CTC), (WGM00 : WGM01 = 01)
Phase correct PWM, (WGM00 : WGM01 = 10)
Fast PWM, (WGM00 : WGM01 = 11)

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 13 / 48

TAB 5. Overview of the settings for timer03

3https://wolles-elektronikkiste.de/en/timer-and-pwm-part-1-8-bit-timer0-2
Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 14 / 48

https://wolles-elektronikkiste.de/en/timer-and-pwm-part-1-8-bit-timer0-2

AVR TIMER2
AVR’s TIMER2 is an 8-bit timer and works mostly like TIMER0

FIG 7. TCCR2 —Timer/Counter Control Register Register

However, it can also be used as real-time counter as follows:
A 32.768kHz crystal is connected to TOSC1 and TOSC2 pins of the MCU
The AS2 bit of the Asynchronous Status Register (ASSR) is set

FIG 8. The Asynchronous Status Register

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 15 / 48

TIFR —Timer Interrupt Flag Register register
The TIFR register contains the flags of different timers

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 16 / 48

TOV0 —TIMER0 overflow flag
The TOV0 flag is set when the counter overflows, going from 255 to 0.
When the timer rolls over from 255 to 0, the TOV0 flag is set to 1 and it will
remain set until the software clears it
To clear this flag, we need to write 1 to it (and not zero, please remember this).
This strange rules applies to all flags in all AVR MCUs.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 17 / 48

Normal mode

Normal mode
In this mode, the content of the timer/counter increments with each clock.
It counts up until it reaches its max of 0xFF (i.e., 255).
When it rolls over from 0xFF to 0x00, it sets high a flag bit called TOV0. This
timer flag can be monitored

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 18 / 48

Steps to program Timer0 in Normal mode
1 1. Load the TCNT0 register with the initial count value.
2 2. Load the value into the TCCR0 register, indicating which mode

(8-bit or 16-bit) is to be used and the prescaler option. When
you select the clock source, the timer/counter starts to
count, and each tick causes the content of the timer/counter
to increment by 1.

3 3. Keep monitoring the timer overflow flag (TOV0) to see if it is
raised. Get out of the loop when TOV0 becomes high.

4 4. Stop the timer by disconnecting the clock source
5 5. Clear the TOV0 flag for the next round.
6 6. Go back to Step 1 to load TCNT0 again.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 19 / 48

1 #include <avr/io.h>
2 /*F=(32768)/(2^8 * 64 * 2) = 1 blinks per sec*/
3 #define F_CPU 32768UL
4 int main(){
5 uint8_t count=0;
6 DDRB |= (1<<PB1)
7 ASSR |= (1<<AS0); //use ext oscillator
8 TCCR0 |= (1<<CS00); //normal mode, no prescaling
9 while(1) {

10 while (! (TIFR & (1<<TOV0))){/*Wait until overflow occurs*/}
11 TIFR |= (1<<TOV0); //clear by writing a one to TOV0
12 count++; //extend counter
13 if((count % 64) == 0){//toggle PB0 every 64 overflows
14 PORTB ^= (1<<PB1);
15 }
16 }
17 }

LISTING 1: Flash an LED at 1 second interval with TCNT0 in normal mode

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 20 / 48

1 #include <avr/io.h>
2 /*F=(32768)/(2^8 * 64 * 2) = 1 blinks per sec*/
3 #define F_CPU 32768UL
4 int main(){
5 uint8_t count=0;
6 DDRB |= (1<<PB1)
7 ASSR |= (1<<AS0); //use ext oscillator
8 TCCR0 |= (1<<CS00); //normal mode, no prescaling
9 while(1) {

10 while (! (TIFR & (1<<TOV0))){/*Wait until overflow occurs

*/}
11 TIFR |= (1<<TOV0); //clear by writing a one to TOV0
12 count++; //extend counter
13 if((count % 64) == 0){//toggle PB0 every 64 overflows
14 PORTB ^= (1<<PB1);
15 }
16 }
17 }

LISTING 2: Flash an LED at 1 second interval with TCNT0 in normal mode
Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 21 / 48

Generating larger time delays
The delay depends on two factors that are beyond the control of the programmers:

The crystal frequency
The timer’s 8-bit register.
It is possible to use a prescaler of
the TCCR0 to increase the delay
The prescaler allows to divide the
clock by a factor of 8 to 1024

FIG 9. Prescaler of the TCCR0

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 22 / 48

Generating larger time delays—Example
Find the timer’s clock frequency and its period for various AVR-based systems, with
the following crystal frequencies. Assume that a prescaler of 1:64 is used: (A)
8MHz, (B) 16MHz, and (C) 10MHz

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 23 / 48

Generating larger time delays—Example
Find the timer’s clock frequency and its period for various AVR-based systems, with
the following crystal frequencies. Assume that a prescaler of 1:64 is used: (A)
8MHz, (B) 16MHz, and (C) 10MHz

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 23 / 48

Generating larger time delays—Example
Find the value for TCCR0 if we want to program Timer0 in Normal mode with a
prescaler of 64 using internal clock for the clock source.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 24 / 48

Generating larger time delays—Example
Find the value for TCCR0 if we want to program Timer0 in Normal mode with a
prescaler of 64 using internal clock for the clock source.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 24 / 48

Generating larger time delays—Example
Assume XTAL = 8 MHz.

1 Find the clock period fed into Timer0 if a prescaler option of 1024 is chosen.
2 Show what is the largest time delay we can get using this prescaler option and

Timer0.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 25 / 48

Generating larger time delays—Example
Assume XTAL = 8 MHz.

1 Find the clock period fed into Timer0 if a prescaler option of 1024 is chosen.
2 Show what is the largest time delay we can get using this prescaler option and

Timer0.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 25 / 48

CTC mode programming
Withthe CTC mode, the OCR0 register is used (refer to previous slides)
Unlike the normal, the timer counts until the content of the TCNT0 register is
equal to the content in OCR0
At this point, the timer is cleared and the 0CF0 flag of the TIFR register is set

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 26 / 48

CTC mode example
Assuming XTAL = 8MHz, how would you generate a delay of 1 ms?

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 27 / 48

CTC mode example
Assuming XTAL = 8MHz, how would you generate a delay of 1 ms?

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 27 / 48

16 bit timer programming

AVR’s 16-bit timers
TIMER1 is 16 bit-wide
In contrast to timer 0 or timer 2, timer 1 is a 16-bit timer/counter. Because of
this, you can use it for longer counting sequences. The counting extent is
between 0x0000 and 0xFFFF.
Since Timer1 is a 16-bit timer its 16-bit register is split into two bytes. These
are referred to as TCNT1L—Timer1 low byte and TCNT1H —Timer1 high byte

FIG 10. Timer1 High and Low Registers

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 28 / 48

FIG 11. AVR TIMER1’s registers

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 29 / 48

AVR’s 16 bit timers
Timer1 also has two control registers named TCCR1A (Timer/counter 1 control
register) and TCCR1B.
The TOV1 (timer overflow) flag bit goes HIGH when overflow occurs
Timer1 also has the prescaler options of 1:1, 1:8, 1:64,1:256 and 1:1024
There are two OCR registers in Timer1: OCR1A and OCR1B.
There are two separate flags for each of the OCR registers, which act
independently of each other.
When TCNT1 = OCR1A, the OCF1A flag will be set on the next timer clock.
When TCNT = OCR1B, the OCF1B flag will be set on the next clock.
As Timer1 is a 16-bit timer, the OCR registers are 16-bit registers as well and
they are made of two 8-bit registers. For example, OCR1A is made of
OCR1AH (OCR1A high byte) and OCR1AL (OCR1A low byte).

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 30 / 48

Example
Using CTC mode, calculate the value that should be loaded in the counter to
generate a delay of 8 ms. Assume XTAL = 8 MHz.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 31 / 48

Example
Using CTC mode, calculate the value that should be loaded in the counter to
generate a delay of 8 ms. Assume XTAL = 8 MHz.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 31 / 48

The TIFR register

FIG 12. The TIFR register contains the TOV1, OCF1A, and OCF1B flags

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 32 / 48

The TCCR1B —Timer 1 Control Register

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 33 / 48

Timer1 clock selectors

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 34 / 48

Timer1 working modes

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 35 / 48

Normal Mode
simplest mode
count up to 0xFFFF and wrap around to 0x0000
no clear is ever performed
TOV flag is set when the wrap around occurs (overflow)
to reset TOV, must execute ISR or clear flag manually
no output pins are used

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 36 / 48

Clear Timer on Compare Match (CTC) Mode
resolution of counter is manipulated by output compare register A (OCRnA) or
input capture register (ICRn)
counter is cleared to zero when its value equals either ICRn or OCRnA
TOP is defined by ICRn or OCRnA
interrupt can be generated at compare point
output pins (OCnx) can be utilized
toggle, set, or clear on match

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 37 / 48

Example 1
1 /*blink frequency=(16,000,000)/(2^16 * 64 * 2)=1.91 cycles/sec*/
2 #include <avr/io.h>
3 #define F_CPU 16000000UL
4 int main(){
5 DDRB |= (1<<PB0); //set port B bit zero to output
6 TCCR1A = 0x00; //normal mode
7 TCCR1B = (1<<CS11) | (1<<CS10); //use clk/64
8 TCCR1C = 0x00; //no forced compare
9 while(1) {

10 if (TIFR & (1<<TOV1)) { //if overflow bit TOV1 is set
11 TIFR |= (1<<TOV1); //clear it by writing a one to TOV1
12 PORTB ^= (1<<PB0); //toggle PB0 each time this happens
13 }
14 }
15 }

LISTING 3: Use TCNT1 in normal mode and blink LED on PB0

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 38 / 48

Example 2—Toggle PB0 on compare match
1 /*blink frequency ~=(16,000,000)/(2^15*64*2)=3.8 cycles/sec*/
2 #include <avr/io.h>
3 int main(){
4 DDRB !=(1<<PB0);
5 //ctc mode, toggle on compare match
6 TCCR1A |= (1<<COM1A0);
7 //use OCR1A as source for TOP, use clk/64
8 TCCR1B = (1<< WGM12) | (1<<CS11) | (1<<CS10);
9 TCCR1C = 0x00; //no forced compare

10 OCR1A = 0x7FFF; //compare at half of 2^16
11 while(1) {
12 if (TIFR & (1<<OCF1A)) {//if output compare flag is set
13 PORTB ^= (1<<PB0); //toggle PB0 each time this happens
14 TIFR |= (1<<OCF1A); //clear it by writing a one to OCF1A
15 }
16 }
17 }
18 }

LISTING 4: Using OC1A to toggle PB0 on compare

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 39 / 48

Examples

Example 1—Blink an LED at 10Hz
1 Set up LED hardware
2 Set up timer
3

4 WHILE forever
5 IF timer value IS EQUAL TO OR MORE THAN 1/20 sec
6 THEN Reset counter
7 Toggle LED
8 END IF
9 END WHILE

LISTING 5: Pseudocode for flashing an LED at 10Hz

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 40 / 48

Example 1—Blink an LED at 10Hz
We need to know the count value needed for a 10 Hz delay (i.e., 1/20 delay)

Target Timer Count = 1
Target Frequency/

1
Timer Clock Frequency − 1

= 1
20/

1
1000000 − 1

= .05
0.000001 − 1

= 50000 − 1

= 49999

AVR MCU have an internal frequency FCPU = 1MHz
The count is updated each timer input clock tick, thus it takes one tick
The timer needs to count to 49999 before 120th of a second has elapsed.
That’s a very large value - too large for an 8 bit value!
We’ll need to use the 16 bit timer 1 instead.

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 41 / 48

Example 1—Blink an LED at 10Hz
1 # include <avr /io.h>
2 int main (void){
3 DDRB |= (1 << 0);
4 TCCR1B |= (1 << CS10); // set up timer
5 while(1){
6 // true when count matches 1/20 of a second
7 if (TCNT1 >= 49999){
8 PORTB ^= (1 << 0);
9 // Reset timer value

10 TCNT1 = 0;
11 }
12 }
13 }

LISTING 6: Code for flashing an LED at 10Hz

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 42 / 48

Example 2—Blink an LED at 1Hz
What if we needed a longer delay, e.g., 1 sec?
AVR MCU have a prescaler that can be used to reduce the clock frequency.

Timer Resolution = 1
Input Frequency/Prescale

= Prescale
Input Frequency

At FCPU = 1MHz the resolutions with a prescaler are as follows:

Prescaler Value Resolution (FCPU = 1 MHz)
1 1 µs
8 8 µs
64 64 µs
256 256 µs
1024 1024 µs

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 43 / 48

Example 2—Blink an LED at 1Hz
With a pre-scaler, the needed count is computed as:

Target Timer Count =
(

1
Target Frequency

/
Prescale

Input Frequency

)
− 1

Which can be rearranged as

Target Timer Count =
(

Input Frequency
Prescale × Target Frequency

)
− 1

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 44 / 48

Example 2—Blink an LED at 1Hz
With a pre-scaler, the needed count is computed as:

Target Timer Count =
(

1
Target Frequency

/
Prescale

Input Frequency

)
− 1

Which can be rearranged as

Target Timer Count =
(

Input Frequency
Prescale × Target Frequency

)
− 1

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 44 / 48

Example 2—Blink an LED at 1Hz
If we need a prescaler that gives a 1Hz delay at FCPU = 1MHz, then the counter is
computed as follows:

Prescaler Value Target Timer Count
1 999999
8 124999
64 15624
256 3905.25
1024 975.5625

Prescaler 256 and 1024 do not divide evenly; thus are discounted because
they would lead to poor precision
Only prescaler 1,8,64 are eligible.
Prescaler 1,8 give very large values that cannot fit in any timer counter
Only prescaler 64—with a count of 15624—allow a 1Hz delay

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 45 / 48

Example 2—Blink an LED at 1Hz
1 #include <avr /io.h>
2 int main (void){
3 DDRB |= (1 << 0);
4 // Set up timer at Fcpu /64
5 TCCR1B |= ((1 << CS10) | (1 << CS11));
6 while(1){
7 // true when count matches 1 second
8 if (TCNT1 >= 15624){
9 PORTB ^= (1 << 0); // Toggle the LED

10 TCNT1 = 0; // Reset timer value
11 }
12 }
13 }

LISTING 7: Code for flashing an LED at 1Hz

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 46 / 48

Longer timer delays
What if you needed a 10 second or 1 minute or even 1 year delay?
Solution: create a sort of prescaler and increment a variable each time that
period is reached, and only act after the counter is reached a certain value.

1 Set up LED hardware
2 Set up timer
3 Initialise counter to 0
4 WHILE forever
5 IF timer value IS EQUAL TO 1 sec THEN
6 Increment counter
7 Reset timer
8 IF counter value IS EQUAL TO 60 seconds THEN
9 Toggle LED

10 END IF
11 END IF
12 END WHILE

LISTING 8: Longer timer delay pseudocode

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 47 / 48

1 #include <avr/io.h>
2 int main (void){
3 unsigned char elapsed_seconds = 0;
4 DDRB |= (1 << 0);
5 TCCR1B |= ((1 << CS10) | (1 << CS11));
6 while(1){
7 if (TCNT1 >= 15624){/*true when count matches 1 second*/
8 TCNT1 = 0; /*reset timer value*/
9 elapsed_seconds ++;

10 if(elapsed_seconds==60) {/*if one min is elapsed*/
11 elapsed_seconds = 0; /*reset counter variable*/
12 PORTB ^= (1 << 0);
13 }
14 }
15 }
16 }

LISTING 9: 1 minute timer delay

Kizito NKURIKIYEYEZU, Ph.D. 8-bit and 16 bit AVR timers January 18, 2023 48 / 48

The end

	8 bit timer programming
	Mode of operations
	16 bit timer programming
	Examples
	The end

